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Abstract. Inthis paperwe investigate the smallest eigenvalue, denoted asa(N +1) x (N +1)

Hankel or moments matrix, associated with the weighty) = exp(—x#), x > 0, 8 > 0, in the
large N limit. Using a previous result, the asymptotics for the polynomi&lgz), z ¢ [0, o0),
orthonormal with respect te, which are required in the determinationigf are found. Adopting

an argument of Szégthe asymptotic behaviour ofy, for g > % where the related moment
problem is determinate, is derived. This generalizes the result given by $@eg = 1. Itis

shown that forg > % the smallest eigenvalue of the infinite Hankel matrix is zero, while for
0<B< % itis greater then a positive constant. This shows a phase transition in the corresponding
Hermitian random matrix model as the parameteraries withpg = % identified as the critical

point. The smallest eigenvalue at this point is conjectured.

1. Introduction

In the theory of Hermitian random matrices, the Hankel determinant plays an important role,
Dy = det (ui+)). 1.1
N Ogi,jegN(M +]) ( )

For a given weight functiom (t) on J (€ R), the momentg, are

uk:=/w(t)t"dt k=0,1,2,....
J

Associated withw (¢) is a Hankel matrix or moment matrix of ord&r+1, { H}, whose entries
are given by

ij = Wj+k 0<] k< N. (12)

It is believed that correlations between eigenvalues of random matrices are universal after
a suitable rescaling. In the following treatment we will show that a fundamental quantity,
namely the least eigenvalues of these Hankel matrices exhibit a critical dependence on the
weight function. It is this non-universal property that motivates our investigation of this
problem.

If J is a single interval say], b], wherea andb are fixed and the Szégondition,

b v(x)dx
—_— <
a V(b —=x)(x—a)

is satisfied, then the asymptotic behaviour of the Hankel determinants foNasgsstablished,
as shown by Szép[10]. Letiy denote the smallest eigenvalue. Szedso investigated the
behaviour o forlargeN [8]. He studied the cases for whidican either be afinite or infinite

vi=—Ilnw
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interval with special choices fap. If w(x) =1, x € (—1,1) andw(x) = 1, x € (0, 1), then
the respective smallest eigenvalues are for lafge

Ay = 2873 NE (/2 — 1)2VH3
Av 29T NE (V2 — 1)V,
Widom and Wilf [11] generalized Szé@ results to a kind of ‘universal’ law. Thus, if
w(x) > 0, x € [a, b] and the Szegy condition is satisfied, then it was found in [11]
Ay~ ANZB™V
whereA and B are computable constants dependingwua, b, and are independent &f.
In [8], Sze@ also considered the cases of infinite intervals whete) = exp[—x?], x €

(—o00, too) andw(x) = exp[—x], x € [0, +o0), are the weights of the Hermite and Laguerre
polynomialst. The respective smallest eigenvalues are

AN 297ieNs exp[—2(2N)%]

AN X 2igieN: exp[—4N%].
Observe that in the examples given above the smallest eigenvalues are exponentially small.
Therefore, it is very hard to numerically invert the Hankel matrices associated with these

weights.
Itis well known thath y is given by the Rayleigh quotient

N —
S o Hiyxix
)W:min{w}_ (1.3)
ijo |x; 12
If mn(z) is a polynomial of degre&/, with coefficientsy;, j =0,..., N
N
y(z) = ijzj (1.4)
j=0
then
N
Z Hjpx %, = / l7en () [Pw(t) dt (1.5)
j.k=0 J
and
N 2
o ,d
Sl = [ e, (1.6)
j=0 0 d
Consequently, we can rephrase the extremal expressian fdi..3), as
2 2 .
i max{/ 7y (€9)[2dgb : / 7ty (O 1Pw(t) df = 1}. (1.7)
)‘-N 0 J
Letting{ P, (¢)} be the polynomials, orthonormal with respecit@), thenry hasthe expansion
N
N (2) = ZCij(Z)~ (1.8)
j=0
Thus
21 ) N
| mvEitas = 3 ke (19)
0 j. k=0

T Throughout this paper, the relatiary ~ by means liny . ay /by = 1.
¥ There is a factor of 4 missing from the original formula fgr; the last equation on p 677 of [8].
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where
27 )
&V:/‘fﬁﬂﬂ&ﬁ¢ e=e. (1.10)
0
Therefore, (1.7) is equivalent to
2 N N
— = max{ Z KjijEk . Z |Cj|2 = 1} (111)
AN J k=0 j=0

With the Schwarz inequality, which states that for all valueg ahdk
1 1
|Kjkl < KK
and Cauchy'’s inequality we obtain an upper bound of (1.11):

N
E Kjk chk <
J.k=0 J

IK jllc;llckl

N
k=0

j.k=0
N N
(S0)(5)
j=0 j=0
N
-y k. (1.12)
j=0

Therefore, a lower bound for the smallest eigenvalyés given by

2
— < . 1.13
Yo K 19
This paper is organized as follows. In section 2, by adopting a previous result [5], we

obtain the asymptotic formula for the polynomials orthonormal with respeet(to :=
exp[-t#1, B > % which is then employed in sections 3 and 4 for the determination of the
large N behaviour ofs . In these sections we show, following [8], by an appropriate choice
of the vector{c;}, that the lower bound given by (1.13) is in fact an asymptotic estimate for
large N. By a simple application of the Laplace meth@,j.vzo Kj; is estimated. Thus the
asymptotic form ofry follows. In order to test the accuracy of the theory, these results are
checked against numerical calculations for varigusnd N, which were obtained using the
Jacobi rotation algorithm [12] to reduce the Hankel matrix to diagonal form. This is found in
section 5.

2. The weightw(t) = exp[—t°],t € [0, o)

In this case, the moments are

L =%r (”;1). 2.1)

In order to find a lower bound for the smallest eigenvalue good knowledge is required of
the associated orthonormal polynomidRy (z)}, for N large andz ¢ (0, c0). In [5], by
applying the linear statistics formula for matrix ensembles together with the Heine determinant
representation, asymptotic forms for the polynomials with weigft) = exp[—v(¢)], where
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v(?) is an arbitrary convex function supported on 40), are derived. The zeros of these
polynomials are supported @, b)) C R. Herea = 0, whilstb(N) follows from the condition
that ensures thaty () hasN roots on(a, b), one finds that [5],

™[

o1
b(N;B) = CN¥ where c=cwy=4vﬂwqﬂN. 2.2)

I'(2p)

The normalized polynomials @ — oo are found, using [5], to be

(=N exp[-f(1) + 2N + ) In(VT + /1 +7)] t
Py(t) ~ - == t¢[0,b
T Vb @+ T Flo
(2.3)
where f is given by
— B
fay =Y f ) ¢ [0.5] (2.4)
yb—y)
From the definition and basic properties of the hypergeometric functions [7],
3 (=)
f@O) = ———5Ve@+0) 2R (1, 1-i5—F; —c) — ——searp
2
N s 1 1
_E 1+§2Fl<11§7,8+191+§)' (25)

At this point note the dichotomy of the problem, the nature of the hypergeometric function
dictates that whilst the first representation is more convenient in the lafigeit, where
|¢] < 1, it cannot be used wheh=n + % n=12,..., necessitating the use of the second
result of (2.5) in such instances.

Using the fact that

In (/Eﬂ/ﬁ) =Vt2R1G, 5 3 -0) (2.6)

we find,
(2N + 1) In (\/E+‘/1+ ) Cﬁ Z (1) a, ¢z (2.7)
whereE[n] denotes the integer part afand
L(r+3
o= 103 (2.8)

r+Hre+1’

So the asymptotic expression of the polynomials fer(0, co), is,

(—1)N§% (_ /3 E[p— 2] 1
PN(I)ZﬁeXP<—f(I) Chr - Z (=D'a.s"2" ) (2.9)

To make further progress we now consider separately the two possible cases, as identified
above, forg > 1.
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3.87n+1in=123...

Wheng #£ n + % we use the first form fof (¢) in equation (2.5). The series expansion for the
function,F1(1,1— B; 3 — g; —¢), valid for |¢| < 1, is

F(z FrA-pg+r)

F{L1-8=-—-8;— -1 g 3.1

21< ﬂ B ¢) T ,3)2< Y@ s r)c (3.1)
whilst for |¢| < 1, 4/1 +¢ may be written as

rF( _2)

Vi éh_zx/‘z(_) re+1)° (3-2)

With this noted, the expansion fgi(z) as¢ — O is
L TGP (=Y L r+iop
fO =~ = i p (7) ; (—1)'b¢

_=)F
2

secr 8 (3.3)

where
T(s—Hr@a—p+r—s)

b, = . 3.4
gr(wl)r(g—ﬂw—s) (34)
Recall thatt = —tC‘lN’%, and by the use of equation (2.9) we have,
(_1)N 11 |:(—t)ﬂ i| |: 175 E[B z] (_t)r+;:|
Py(t) ¥~ ———(—tCN?#) 2ex secrf | ex (DA, ———
N \/E P 2 '8 P AT Z (CNE)r
(3.5)
with
. TG-B
A =a, + —ZF(l 5 b,. (3.6)

Note that, with8 = 1, we findC = 4 andAq = 4./ and, consequently, recover the
classical result for the Laguerre polynomials due to Perron [9],

N
Pyn(t) >~ ) (—tN)’% exp[Z«/—tN + 5} t ¢[0,00) N — oo. (3.7)
2w 2
With Py (¢) having the form (3.5), wherd, = ‘;ﬁf is positive forg > % we observe
that for sufficiently large andk the dominant contributions t& ;; are from the arc of the unit
circle around = —1. Thus by fixing an arbitrary positive numherand confining ourselves
to values ofj andk satisfying

N—wN#% < j,k<N (3.8)

we have

Kjk:/ P;j(€%) P (e7?) do. (3.9)

—&
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Using the substitutiod = ¢ — 7 and expanding the integrand @i <« 1 gives the following:
( 1) Jjtk E[B— 2] r

ecr 5 1
2jT\/_eS PN~ ﬂ/gexp[\/_ Z( 1)—r

2n2 .
J(am 2 ot i

LD 0 klzﬁgg)ﬂ o, (3.10)

K ~

2

Becausq‘l‘ﬁﬁ — kY%7 remains bounded in the range specified by (3.8) we can disregard
the linear term ir9 in the integrand. This integral can then be approximated by extending
the range of integration to the real axis, which does not affect the asymptotic behaviour, as
contributions from(—oo, —¢) and(e, oo) are sub-dominant compared with those frong [ ]

asj, k — oo. Therefore,

E[-3]

(-7 s ecrpn— i [ 1 Ay qi_r 41
ik — Ay 2P N2 exp (D) ==(j % F+k %R
BENCTS JzC ; cr
(3.11)
From (3.11), we see that whg'randk are sufficiently large and satisfy (3.8),
Kj~(— 1)/+k1< KZ (3.12)

This is especially useful as it enables the determination of the Isirgehaviour ofAy. By
choosing the vectdlc;}, as in [8], such that

. 1 1
TiK2 i —wN#] < j<
Cj = Uel KJJ if E[N N ﬂ] \1‘] = N (313)
0 if j<E[N—wN%]
whereo is a positive number determined by the condition
N N
dlejP=0* > K;=1 (3.14)
=0 J=E[N—-wN ]
we find, using (3.12) and (3.14), that
N N
Z KjijEk = Z Ze'”(’ k)Kij Kkzk
Jk=0 j,k=E[N7wN2f’]
N 2
~ 02[ Z ij]
j=E[N—wN%]
N
= > Kj (3.15)

j:E[N—wN%ﬁ]
Recalling equation (1.11), we see that siaces arbitrarily large the asymptotic behaviour of
the maximum, by virtue of the inequality (1.13), is well apprommate[ﬁ& K ;. Therefore,
we have shown that

N
~>"Kj (3.16)

j=0
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The leading behaviour of this sum for larggis in turn found by replacing the sum by an

integral and by applying the Laplace method, which in this context may be stated as follows.
If for x € [a, b], the real continuous functiog(x) has as its maximum the valugb),

then asN — oo

f (b) exp[N ¢ (b)]
(x)exp[N¢ (x)]dx ~ 2= 71772 3.17
[ 1w exwoc et (317)
A simple calculation gives the expression fgy,

2 1 1 1 -1 1,1 2N17§ E['Bi%] A r
— >~ g iCiA, 2P N2 ex [ (—1)"—’N_ﬂ] 3.18
=3 0 Pl === ; o (3.18)
Puttingg = 1, Sze@'s classical result for the Laguerre weight is recovered:

2 5 1 1

; ~ 2 ir e LN H exp[4/N]. (3.19)

N

From (3.18) we see that the smallest eigenvalue is exponentially small forNaagel is zero
for the corresponding infinite Hankel matrix.

4.8=n+in=12,.

In this section we investigate the case where n + 1, n > 1. Such cases, as was explained
previously, require the second form ¢fz) in (2.5). To obtain the asymptotic expansion for
f (@), we first note the following result for the hypergeometric function.

If p=n+3withn=1,2,...then

(x—1>f’5< 1+37, % 1 ( x ))

. i) o, oD | + 4.1
2 1( ;B x> B xﬂ+% ﬁn 1_ﬁ — Lr—% x—1 ( )
whereL, is given by

L, = —C'(r). (4.2)
21

This is easily be proved by using an inductive argument, noting the following version of Gauss'’
recursion relations [7]

1 .5 n+3Hiz-1 1 3 1 1
Fil\lgintgiz)=———— |2\l gnt5z) -2k (L 5int 5
21( 2" ZZ) (n+ 1z [21< 2" ZZ) 21( 2" ZZH

nn+ 3 )
m F <1,§,n+§,z) (43)

together with the fact that

15 3D [1+,2],3
2F (1 5 2 Z) 4 Z% n[l_ﬁ]+§Z. (44)

Nl

Therefore,

f(t)_(_ )ﬂh( t)f‘( L/_V: }+,/1+ Z( 1)rL€7r ) (4.5)

Using (3.2), we find

e TR S B i S i
fm:T'”H* DG N e N (RS (4.6)
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where
sk 3
8 = Sl 4.7
L 1
s=1 753
and
L' — ) .
f >0
Vei=1 TGr+1) o (4.8)
0 if r<O.

Recalling = —tC*lN*%, the strong asymptotics of the polynomials fof [0, co) reads,

-7 —1)f=z(—1)f :
PN(t)N(\/%( chﬂ)AeXp[( 1) 2n( 1) n <4CNﬂ>j|

—t

1—7 B— (— t)”l
xexp[ (-1)'B,——— } (4.9)
v Z (CN#)
where
B, = a, — 2L (4.10)
r -— Ur ,3 5_7_, .

Note the appearance of the logarithm in the exponential. Skgce ‘;Jf f

argument similar to that in the previous section, we see that in determifinthe essential
contribution comes from the arc in the vicinity of= —1. As before, restricting, k to the
range given in (3.8), we have,

Kjk:/ Pi(—€") P (—e ) db. (4.11)

We expand the exponential in the integrand|fdr« 1, keeping terms up to second order and
then extend the range of integration to the infinite interval. Becgih’s@’ﬁ — k“ %5 and
In(j/k) remain bounded in the range given by (3.8), we find

(—=1)/* R 1 afl
oyt o N T EECNT)

k=

1 r
X eXp[ (— ) A+ kl‘w‘ﬁ)}. (4.12)
) 2
Again, note that for sufficiently largg andk, satisfying (3.8),
1 1
Kjj ~ (D)™ K3KZ. (4.13)
Repeating the argument of the previous section, it follows that
2 N
r. / K dj. (4.14)
AN 0

The leading term in the asymptotic expansion of this integraVas> oo follows from an
application of the Laplace method and is given by

1
or 1 4 4 1 -3 oNY-5 Az B .
— >~ -n"4C4*B ex (—1)’—Nﬂ}. 4.15
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vf-12

Effectively, exp[see ] in (3.18) is replaced by4C N/#) . Note the alternating nature
of this additional factor depending on whether % is odd or even. Again, (4.15) shows
that limy_. ., Ay = 0. According to standard theory [1], the moment problem associated with
w(x), x > 0is indeterminate if

* vx)

0o Vx(1+x)

Therefore, = % is special as it marks the transition point at which the moment problem
becomes indeterminate. Assuming, the result given in (2.9) holds, we have

N
Py (1) ~ ( 22) (—1)"iN"2 exp[g (In [%} + 1)} t ¢ [0, 00). (4.16)
Again, if we confine ourselves to the range whe¢r@ndk are sufficiently large to enable the
use of the above asymptotic representation, we find that the major contributidhs toe
from the arc around = —1. But, due to the behaviour &y (¢) with increasingV, it is quite
clear that K ;| decreases ag k — oo, making an analysis analogous to that of the previous
sections impossible.

It is, however, possible to obtain an approximate lower bound for the least eigenvalue,
since (1.13) still holds. Applying the Christoffel-Darboux formula [9] and the result given
in [4] for the largeN off-diagonal recurrence coeeficients, we find,

N I N . .
> Ky :f > Pi(—€)Pj(—e ™) do
j=0 7

— j=0

dx < o0.

T b ity _ amif _ b
271'2N2/ Py(=€7) Pyna(—€ .) PI.V( &) Prn(€ )de. (4.17)
. e|9 _ e—l9
Thus, using the Laplace method,
b 2
f dx f(x)exp[N¢ (x)] =~ f(c)exp[Ne ()], | ——— as N — +00
a —N¢"(c)
wherec € (a, b) is the maximum of (x) for x € (a, b), gives
N 2/
(4w Ne)
Kiirme 27 4.18
;0 T 4/In(An Ne) (4.18)

So at the poinis = % the smallest eigenvalue appears to decrease algebraically instead of
exponentially.

5. Numerical results

In this section we check the accuracy of our asymptotic expressions for the least eigenvalue
of the the various Hankel matrices against numerical results. Due to the fact that the moment
matrices in these cases are very ill-conditioned because of the vast range in scale of the matrix
elements, the Jacobi rotation algorithm [12], proved far more stable than the more conventional
techniques for numerically determining a small selection of the eigenvalues of large symmetric
matrices such as the Lanczos procedure or the Householder method [6]. This appears to be an
unusual phenomenon. Because of the behaviour of the matrix elements in these problemsiitis
necessary to implement a multiple-precision package that allows floating point arithmetic of
arbitrary precision. The library of sub-routines created by Brent [3] was employed to combat
the effect of rounding errors in the numerical procedures.
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% error

Figure 1. The percentage error of the theoretical valuesyfvhen compared with those obtained

10.0

95 -
9.0 -
85
8.0
75
70
6.5
6.0
55 -
50 -
45
40 r
35
30
25
20
15
1.0 r
05
0.0

= — -m beta=1.75
- —a beta=2
+— - ¢ beta=2.5

numerically, for varioug.

Table 1. Numerical and theoretical values of; for variouspg.

50 100

B

N

Numericali y

Theoretical y

1

NIlw

BN

[N1[é]

50
100
150
200
300

50
100
150
200
300

50
100
150
200
300

50
100
150
200
300

50
100
150
200
300

20948x 10710
21079x 10715
29551x 1019
16387 x 1022
55215x 1028
64066x 1022
62353x 10736
99476x 10748
28132x 10758
46009x 1077
64483x 10727
16976x 10°4°
15193x 10761
39265x 1076
14844 x 107102
27356x 10731
38907x 10754
29557x 10~74
89775x 10793
95593x 10127
22384x 10738
12580x 1068
53195x 1079
12155x 10-121
15236x 107169

2.3695x 1010
2.3006x 10715
3.1743x 10719
1.7437x 10722
5.8090x 10~28
6.8438x 1022
6.5384x 1036
1.0343x 10~%7
2.9101x 10758
4.7300x 10~ 77
6.6844x 10727
1.7424x 10745
1.5525x 1061
4.0009x 10776
1.5074x 107102
2.5449x 10731
3.6415x 10°°4
2.7769x 10~ 74
8.4574x 10793
9.0396x 10~127
2.4010x 10738
1.3288x 1078
5.5789x 1079
1.2691x 107121
1.5819x 10169
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ForO< B < % the corresponding moment problem becomes indeterminate [1], and as a
consequence, the sum

00

> IPi)?

j=0
converges for every in every compact subset of the complex plane. Therefore,

00
Zij:§>0
j=0

and the smallest eigenvalue for the corresponding infinite Hankel is a positive constant bounded
below by 2r/&¢. Proof of the extention of the above statement to all indeterminate moment
problems and other related topics can be found in [2]. The situation far ® < % is in
contrast to the results fg8 > % where (3.18) and (4.15), as confirmed by the numerics,
show that the sum diverges—a fact that is also well known from the standard theory when the
moment problem is determinate [1]. This separation of behaviour in the two regions is the
phenomenon of phase transition alluded to earlier.

The comparison between the numerical values @ind those obtained from the theoretical
expressions (3.18) and (4.15) is shown in table 1 and figure 1.
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